题目链接
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7.
In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
在维基百科查到这样一段代码:
1 | double power (double a, unsigned int n) |
当 a=n=5时:
5 | 2 | 1 |
---|---|---|
5^2 | 5^4 |
当a=n=8时:
8 | 4 | 2 | 1 |
---|---|---|---|
8^2 | 8^4 | 8^8 |
这个算法真的达到了指数级增长,时间复杂度仅为O(log n ),代码优美.
由此修改就可得到AC代码:
1 |
|